Tag Archives: nebula

Unravelling the Web of a Cosmic Creeply-Crawly

Unravelling the Web of a Cosmic Creeply-Crawly

20140109 Ray Villard & Nicky Guttridge of Space Telescope Science Institute —

Cosmic Creeply-Crawly Tarantula Nebula
This huge Hubble Space Telescope mosaic of Tarantula Nebula, spanning a width of 600 light-years, shows a star factory of more the 800,000 stars being born. (20140109) Image by NASA, ESA, and E. Sabbi (STScI)

This new Hubble image is the best-ever view of a cosmic creepy-crawly known as the Tarantula Nebula, a region full of star clusters, glowing gas, and dark dust. Astronomers are exploring and mapping this nebula as part of the Hubble Tarantula Treasury Project, in a bid to try to understand its starry anatomy.

The Tarantula Nebula is located in one of our closest galactic neighbours, the Large Magellanic Cloud. Hubble has released images of this celestial spider several times before: in 2004 (heic0416), 2010 (heic1008), 2011 (heic1105) and 2012 (heic1206). While these images show striking panoramic views of this turbulent region, this new image gives us the deepest and most detailed view yet.

Created using observations taken as part of the Hubble Tarantula Treasury Project (HTTP), this image is composed of near-infrared observations from both Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS). Due to the combination of infrared filters in this image a purple haze fills the frame, with deep red wisps of dust and bright stars scattered throughout.

This region is an example of an HII region — a large cloud of partially ionised hydrogen within which new stars are being born. Visible to the left of centre is a sparkling star cluster known as R136. It was initially identified as a star, but astronomers puzzled over how one single monstrous star could ionise a giant HII region. However, astronomers later realised it was actually a cluster of stars: a super star cluster.

R136 will eventually become a globular cluster: a spherical ball of old stars that orbits around the centre of its host galaxy. R136 is so massive that it contributes greatly to the Tarantula’s brightness, emitting most of the energy that makes the nebula so visible.

The Hubble Tarantula Treasury Project (HTTP) is scanning and imaging many of the stars within the Tarantula, mapping out the locations and properties of the nebula’s stellar inhabitants. These observations will help astronomers to view the nebula and piece together an understanding of the nebula’s structure [1].

This new image is being released today, 9 January 2014, at the 223rd meeting of the American Astronomical Society in Washington, DC, USA.

[1] This image of 30 Doradus is also the focal point of an iBook on stellar evolution aimed at children with visual imparments. The book, called “Reach for the Stars: Touch, Look, Listen, Learn” is produced by Elena Sabbi — the lead researcher on this Hubble image — and her collaborators. More information can be found here.

Go to Source.External link icon


Crab Nebula Heart

Kool Image

Crab Nebula Heart

The Crab Nebula seems to have most of what’s in the celestial bestiary. It is one of the most spectacular nebulas in the sky. It’s a supernova remnant. It has a pulsar that emits in radio, visible, ultraviolet, and X-ray wavelengths. It even has a well-established pedigree since it was sighted by royal Chinese astronomers when light from the supernova arrived here in 1054.

“The Crab Nebula and the star at the center of it are the Rosetta Stone of modern astrophysics,” said Dr. Martin Weisskopf, Project Scientist for the Chandra X-ray Observatory.

Crab Nebula Heart
Chandra Science Center @ NASA

Read more about the Crab Nebula at Science at NASA.

Newborn Stars

  Kool Image

Rho Oph Cloud Star Forming Region

Rho Oph Cloud Star Forming Region


Newborn stars peek out from beneath their natal blanket of dust in this dynamic image of the Rho Ophiuchi dark cloud from NASA’s Spitzer Space Telescope. Called "Rho Oph" by astronomers, it’s one of the closest star-forming regions to our own solar system. Located near the constellations Scorpius and Ophiuchus, the nebula is about 407 light years away from Earth.

Rho Oph is a complex made up of a large main cloud of molecular hydrogen, a key molecule allowing new stars to form from cold cosmic gas, with two long streamers trailing off in different directions. Recent studies using the latest X-ray and infrared observations reveal more than 300 young stellar objects within the large central cloud. Their median age is only 300,000 years, very young compared to some of the universe’s oldest stars, which are more than 12 billion years old.

This false-color image of Rho Oph’s main cloud, Lynds 1688, was created with data from Spitzer’s infrared array camera, which has the highest spatial resolution of Spitzer’s three imaging instruments, and its multiband imaging photometer, best for detecting cooler materials. Blue represents 3.6-micron light; green shows light of 8 microns; and red is 24-micron light. The multiple wavelengths reveal different aspects of the dust surrounding and between the embedded stars, yielding information about the stars and their birthplace.

The colors in this image reflect the relative temperatures and evolutionary states of the various stars. The youngest stars are surrounded by dusty disks of gas from which they, and their potential planetary systems, are forming. These young disk systems show up as red in this image. Some of these young stellar objects are surrounded by their own compact nebulae. More evolved stars, which have shed their natal material, are blue.

The extended white nebula in the center right of the image is a region of the cloud which is glowing in infrared light due to the heating of dust by bright young stars near the right edge of the cloud. Fainter multi-hued diffuse emission fills the image. The color of the nebulosity depends on the temperature, composition and size of the dust grains. Most of the stars forming now are concentrated in a filament of cold, dense gas that shows up as a dark cloud in the lower center and left side of the image against the bright background of the warm dust. Although infrared radiation at 24 microns pierces through dust easily, this dark filament is incredibly opaque, appearing dark even at the longest wavelengths in the image.


Credit: NASA/JPL-Caltech/Harvard-Smithsonian Center for Astrophysics

Update 20080223: A monograph, ASM-0001 is avalable on the astronomy download page and a 35×23 inch poster can be purchased at the SciTechLab Store.